WANG, et al.

SEQUENCE LISTING

10	SEQ ID NO: 2 is primate GPR2 amino acid sequence. SEQ ID NO: 3 is rodent GPR2 nucleotide sequence.												
10													
10													
10	SEQ ID NO: 4 is rodent GPR2 amino acid sequence. SEQ ID NO: 5 is primate Vic nucleotide sequence.												
10	SEQ ID NO: 5 is primate Vic amino acid sequence.												
	SEQ ID NO: 7 is alternative primate Vic nucleotide sequence.												
	SEQ ID NO: 8 is alternative primate Vic amino acid sequence.												
	SEQ ID NO: 9 is rodent Vic nucleotide sequence.												
	SEQ ID NO: 10 is rodent Vic amino acid sequence.												
15	SEQ ID NO: 11 is primate CTACK nucleotide sequence.												
	SEQ ID NO: 12 is primate CTACK amino acid sequence.												
	SEQ ID NO: 13 is rodent CTACK nucleotide sequence.												
	SEQ ID NO: 14 is rodent CTACK amino acid sequence.												
	SEQ ID NO: 15 provides a primate actin PCR primer sequence.												
20	SEQ ID NO: 16 provides a primate actin PCR primer sequence.												
	<110> Wang, Wei												
	Oldham, Elizabeth R.												
25	Soto, Hortensia												
25	Liu, Ying Hudok Sucon A												
	Hudak, Susan A. Homey, Bernhard												
	Morales, Janine M.												
	Kellermann, Sirid-Aimee												
30	McEvoy, Leslie M.												
	Bowman, Edward P.												
	Zlotnik, Albert												
	<120> Chemokine and Receptor Uses; Compositions; Methods												
35													
	<130> DX0882XK												
	<140>												
	<140><141>												
40	<141>												
40													
40	<141><160> 16												
40	<141>												
	<141> <160> 16 <170> PatentIn Ver. 2.0												
40 45	<141> <160> 16 <170> PatentIn Ver. 2.0 <210> 1												
	<141> <160> 16 <170> PatentIn Ver. 2.0 <210> 1 <211> 1089												
	<141> <160> 16 <170> PatentIn Ver. 2.0 <210> 1 <211> 1089 <212> DNA												
	<141> <160> 16 <170> PatentIn Ver. 2.0 <210> 1 <211> 1089												
	<141> <160> 16 <170> PatentIn Ver. 2.0 <210> 1 <211> 1089 <212> DNA												
45	<141> <160> 16 <170> PatentIn Ver. 2.0 <210> 1 <211> 1089 <212> DNA <213> primate <220> <221> CDS												
45	<141> <160> 16 <170> PatentIn Ver. 2.0 <210> 1 <211> 1089 <212> DNA <213> primate <220>												
45	<141> <160> 16 <170> PatentIn Ver. 2.0 <210> 1 <211> 1089 <212> DNA <213> primate <220> <221> CDS <222> (1)(1086)												
45	<141> <160> 16 <170> PatentIn Ver. 2.0 <210> 1 <211> 1089 <212> DNA <213> primate <220> <221> CDS												

5				gtt Val 5							48
U				gca Ala							96
10				cag Gln							144
15				gcg Ala							192
20				gcc Ala							240
25				gcc Ala 85							288
		-	-	GlÀ đđđ	-	-	 	 -	 -		336
30				tct Ser							384
35				tgt Cys							432
40				ggg ggg							480
45				gtg Val 165							528
				cag Gln							576
50				gag Glu							624
55				gcc Ala							672

5					ctt Leu												720
5					gcg Ala 245												768
10					ctg Leu												816
15	gat Asp	cta Leu	ctg Leu 275	gct Ala	gcg Ala	cgc Arg	gag Glu	cgg Arg 280	agc Ser	tgc Cys	cct Pro	gcc Ala	agc Ser 285	aaa Lys	cgc Arg	aag Lys	864
20	gat Asp	gtc Val 290	gca Ala	ctg Leu	ctg Leu	gtg Val	acc Thr 295	agc Ser	ggc Gly	ttg Leu	gcc Ala	ctc Leu 300	gcc Ala	cgc Arg	tgt Cys	ggc Gly	912
25					ctc Leu												960
25	ctg Leu	cgg Arg	agg Arg	ctg Leu	cta Leu 325	cgg Arg	ggt Gly	glà aaa	agc Ser	tcg Ser 330	ccc Pro	tca Ser	GlÀ âââ	cct Pro	caa Gln 335	ccc Pro	1008
30	cgc Arg	cgc Arg	ggc Gly	tgc Cys 340	ccc Pro	cgc Arg	cgg Arg	ccc Pro	cgc Arg 345	ctt Leu	tct Ser	tcc Ser	tgc Cys	tca Ser 350	gct Ala	ccc Pro	1056
35					agt Ser						tag						1089
40	<210> 2 <211> 362 <212> PRT <213> primate																
45		-	Thr	Glu	Val 5	Leu	Glu	Gln	Val	Ser 10	Trp	Gly	His	Tyr	Ser 15	Gly	
	Asp	Glu	Glu	Asp 20	Ala	Tyr	Ser	Ala	Glu 25	Pro	Leu	Pro	Glu	Leu 30	Cys	Tyr	
50	Lys	Ala	Asp 35	Val	Gln	Ala	Phe	Ser 40	Arg	Ala	Phe	Gln	Pro 45	Ser	Val	Ser	
55	Leu	Thr 50	Leu	Ala	Ala	Leu	Gly 55	Leu	Ala	Gly	Asn	Gly 60	Leu	Val	Leu	Ala	
	Thr 65		Leu	Ala	Ala	Arg 70	Arg	Ala	Ala	Arg	Ser 75		Thr	Ser	Ala	His 80	

ŀ

	Leu	Leu	Gln	Leu	Ala 85	Leu	Ala	Asp	Leu	Leu 90	Leu	Ala	Leu	Thr	Leu 95	Pro
5	Phe	Ala	Ala	Ala 100	Gly	Ala	Leu	Gln	Gly 105	Trp	Ser	Leu	Gly	Ser 110	Ala	Thr
10	Cys	Arg	Thr 115	Ile	Ser	Gly	Leu	Tyr 120	Ser	Ala	Ser	Phe	His 125	Ala	Gly	Phe
	Leu	Phe 130	Leu	Ala	Cys	Ile	Ser 135	Ala	Asp	Arg	Tyr	Val 140	Ala	Ile	Ala	Arg
15	Ala 145	Leu	Pro	Ala	Gly	Pro 150	Arg	Pro	Ser	Thr	Pro 155	Gly	Arg	Ala	His	Leu 160
	Val	Ser	Val	Ile	Val 165	Trp	Leu	Leu	Ser	Leu 170	Leu	Leu	Ala	Leu	Pro 175	Ala
20	Leu	Leu	Phe	Ser 180	Gln	Asp	Gly	Gln	Arg 185	Glu	Gly	Gln	Arg	Arg 190	Cys	Arg
25	Leu	Ile	Phe 195	Pro	Glu	Gly	Leu	Thr 200	Gln	Thr	Val	Lys	Gly 205	Ala	Ser	Ala
	Val	Ala 210	Gln	Val	Ala	Leu	Gly 215	Phe	Ala	Leu	Pro	Leu 220	Gly	Val	Met	Val
30	Ala 225	Cys	Tyr	Ala	Leu	Leu 230	Gly	Arg	Thr	Leu	Leu 235	Ala	Ala	Arg	Gly	Pro 240
	Glu	Arg	Arg	Arg	Ala 245	Leu	Arg	Val	Val	Val 250	Ala	Leu	Val	Ala	Ala 255	Phe
35	Val	Val	Leu	Gln 260	Leu	Pro	Tyr	Ser	Leu 265	Ala	Leu	Leu	Leu	Asp 270	Thr	Ala
40	Asp	Leu	Leu 275	Ala	Ala	Arg	Glu	Arg 280	Ser	Cys	Pro	Ala	Ser 285	Lys	Arg	Lys
	Asp	Val 290	Ala	Leu	Leu	Val	Thr 295	Ser	Gly	Leu	Ala	Leu 300	Ala	Arg	Cys	Gly
45	Leu 305	Asn	Pro	Val	Leu	Tyr 310	Ala	Phe	Leu	Gly	Leu 315	Arg	Phe	Arg	Gln	Asp 320
	Leu	Arg	Arg	Leu	Leu 325	Arg	Gly	Gly	Ser	Ser 330	Pro	Ser	Gly	Pro	Gln 335	Pro
50	Arg	Arg	Gly	Cys 340	Pro	Arg	Arg	Pro	Arg 345	Leu	Ser	Ser	Cys	Ser 350	Ala	Pro
55	Thr	Glu	Thr 355	His	Ser	Leu	Ser	Trp 360	Asp	Asn						

DX0882XK

<210> 3 <211> 1089 <212> DNA <213> rodent <220> <221> CDS <222> (1)..(1086) <400> 3 atg ggg acc aag ccc aca gag cag gtc tcc tgg gga ctt tac tcc ggg Met Gly Thr Lys Pro Thr Glu Gln Val Ser Trp Gly Leu Tyr Ser Gly tac gat gag gag gcc tat tcg gtt ggg ccg ctg cca gag ctc tgt tac Tyr Asp Glu Glu Ala Tyr Ser Val Gly Pro Leu Pro Glu Leu Cys Tyr aag get gat gte cag get tte agt egg gee tte caa eee agt gte tee Lys Ala Asp Val Gln Ala Phe Ser Arg Ala Phe Gln Pro Ser Val Ser ctg atg gtg gct gta ctg ggt ctg gct ggc aat ggc cta gtc ttg gcc Leu Met Val Ala Val Leu Gly Leu Ala Gly Asn Gly Leu Val Leu Ala acc cat ctg gca gcc aga cga act acc cga tct ccc acc tcc gtt cac Thr His Leu Ala Ala Arg Arg Thr Thr Arg Ser Pro Thr Ser Val His ctg ctc cag ttg gcc ctg gct gac ctt tta ttg gcc ctg act ttg cct Leu Leu Gln Leu Ala Leu Ala Asp Leu Leu Leu Ala Leu Thr Leu Pro ttt gct gca gca ggg gct ctt cag ggc tgg aat cta gga agt acc acc Phe Ala Ala Ala Gly Ala Leu Gln Gly Trp Asn Leu Gly Ser Thr Thr tgc cgt gcc atc tca ggc ctc tac tcg gcc tct ttc cac gct ggc ttc Cys Arg Ala Ile Ser Gly Leu Tyr Ser Ala Ser Phe His Ala Gly Phe ctc ttc cta gcc tgt atc agc gcc gac cgc tat gtg gcc atc gca cga Leu Phe Leu Ala Cys Ile Ser Ala Asp Arg Tyr Val Ala Ile Ala Arg get etc eca gee ggg cag egg ece tea acg eet age ega geg eae ttg Ala Leu Pro Ala Gly Gln Arg Pro Ser Thr Pro Ser Arg Ala His Leu gtt tca gtc ttc gtg tgg ctg ttg gcg ctg ttt ctg gct cta cct gcg Val Ser Val Phe Val Trp Leu Leu Ala Leu Phe Leu Ala Leu Pro Ala

ţ

					cgg Arg												576
5					gaa Glu	-		-	-								624
10					gtc Val												672
15					ctc Leu												720
20					gca Ala 245												768
20					ttg Leu												816
25					gcc Ala												864
30					ctg Leu												912
35					ctt Leu												960
40	-				ctc Leu 325	-											1008
40					ccc Pro												1056
45					agt Ser				-		tag						1089
50	<212	l> 36 2> PH		t													
55)> 4 Gly	Thr	Lys	Pro 5	Thr	Glu	Gln	Val	Ser 10	Trp	Gly	Leu	Tyr	Ser 15	Gly	

WANG, et al.

.

	Tyr	Asp	Glu	Glu 20	Ala	Tyr	Ser	Val	Gly 25	Pro	Leu	Pro	Glu	Leu 30	Cys	Tyr
5	Lys	Ala	Asp 35	Val	Gln	Ala	Phe	Ser 40	Arg	Ala	Phe	Gln	Pro 45	Ser	Val	Ser
	Leu	Met 50	Val	Ala	Val	Leu	Gly 55	Leu	Ala	Gly	Asn	Gly 60	Leu	Val	Leu	Ala
10	Thr 65	His	Leu	Ala	Ala	Arg 70	Arg	Thr	Thr	Arg	Ser 75	Pro	Thr	Ser	Val	His 80
15	Leu	Leu	Gln	Leu	Ala 85	Leu	Ala	Asp	Leu	Leu 90	Leu	Ala	Leu	Thr	Leu 95	Pro
TO	Phe	Ala	Ala	Ala 100	Gly	Ala	Leu	Gln	Gly 105	Trp	Asn	Leu	Gly	Ser 110	Thr	Thr
20	Cys	Arg	Ala 115	Ile	Ser	Gly	Leu	Tyr 120	Ser	Ala	Ser	Phe	His 125	Ala	Gly	Phe
	Leu	Phe 130	Leu	Ala	Cys	Ile	Ser 135	Ala	Asp	Arg	Tyr	Val 140	Ala	Ile	Ala	Arg
25	Ala 145	Leu	Pro	Ala	Gly	Gln 150	Arg	Pro	Ser	Thr	Pro 155	Ser	Arg	Ala	His	Leu 160
30	Val	Ser	Val	Phe	Val 165	Trp	Leu	Leu	Ala	Leu 170	Phe	Leu	Ala	Leu	Pro 175	Ala
50	Leu	Leu	Phe	Ser 180	Arg	Asp	Gly	Pro	Arg 185	Glu	Gly	Gln	Arg	Arg 190	Cys	Arg
35	Leu	Ile	Phe 195	Pro	Glu	Ser	Leu	Thr 200	Gln	Thr	Val	Lys	Gly 205	Ala	Ser	Ala
	Val	Ala 210	Gln	Val	Val	Leu	Gly 215	Phe	Ala	Leu	Pro	Leu 220	Gly	Val	Met	Ala
40	Ala 225	Cys	Tyr	Ala	Leu	Leu 230	Gly	Arg	Thr	Leu	Leu 235	Ala	Ala	Arg	Gly	Pro 240
45	Glu	Arg	Arg	Arg	Ala 245	Leu	Arg	Val	Val	Val 250	Ala	Leu	Val	Val	Ala 255	Phe
45	Val	Val	Leu	Gln 260	Leu	Pro	Tyr	Ser	Leu 265	Ala	Leu	Leu	Leu	Asp 270	Thr	Ala
50	Asp	Leu	Leu 275	Ala	Ala	Arg	Glu	Arg 280	Ser	Cys	Ser	Ser	Ser 285	Lys	Arg	Lys
	Asp	Leu 290	Ala	Leu	Leu	Val	Thr 295	Gly	Gly	Leu	Thr	Leu 300	Val	Arg	Cys	Ser
55	Leu 305	Asn	Pro	Val	Leu	Tyr 310	Ala	Phe	Leu	Gly	Leu 315	Arg	Phe	Arg	Arg	Asp 320

Leu Arg Arg Leu Leu Gln Gly Gly Gly Cys Ser Pro Lys Pro Asn Pro 325 330 335 Arg Gly Arg Cys Pro Arg Arg Leu Arg Leu Ser Ser Cys Ser Ala Pro 5 345 340 350 Thr Glu Thr His Ser Leu Ser Trp Asp Asn 355 360 10 <210> 5 <211> 731 <212> DNA <213> primate 15 <220> <221> CDS <222> (56)..(436) <220> 20 <221> mat_peptide <222> (122)..(436) <220> <221> misc feature 25 <222> (529) <223> V; may be A, C, or G <400> 5 ggetgatega acageeteae ttgtgttget gteagtgeea gtagggeagg eagga atg 58 30 Met cag cag aga gga ctc gcc atc gtg gcc ttg gct gtc tgt gcg gcc cta 106 Gln Gln Arg Gly Leu Ala Ile Val Ala Leu Ala Val Cys Ala Ala Leu -20 -15 -10 35 cat gcc tca gaa gcc ata ctt ccc att gcc tcc agc tgt tgc acg gag 154 His Ala Ser Glu Ala Ile Leu Pro Ile Ala Ser Ser Cys Cys Thr Glu -5 -1 1 5 10 40 202 gtt tca cat cat att tcc aga agg ctc ctg gaa aga gtg aat atg tgt Val Ser His His Ile Ser Arg Arg Leu Leu Glu Arg Val Asn Met Cys 15 20 cgc atc cag aga gct gat ggg gat tgt gac ttg gct gct gtc atc ctt 250 Arg Ile Gln Arg Ala Asp Gly Asp Cys Asp Leu Ala Ala Val Ile Leu 45 30 35 40 cat gtc aag cgc aga aga atc tgt gtc agc ccg cac aac cat act gtt 298 His Val Lys Arg Arg Arg Ile Cys Val Ser Pro His Asn His Thr Val 50 45 55 50 aag cag tgg atg aaa gtg caa gct gcc aag aaa aat ggt aaa gga aat 346 Lys Gln Trp Met Lys Val Gln Ala Ala Lys Lys Asn Gly Lys Gly Asn 60 75 65 70 55 gtt tgc cac agg aag aaa cac cat ggc aag agg aac agt aac agg gca 394 Val Cys His Arg Lys Lys His His Gly Lys Arg Asn Ser Asn Arg Ala 80 85 90

	cat cag ggg aaa cac gaa aca tac ggc cat aaa act cct tat 436 His Gln Gly Lys His Glu Thr Tyr Gly His Lys Thr Pro Tyr 95 100 105	5
5	tagagagtct acagataaat ctacagagac aatteeteaa gtggaettgg ceatgattgg 490	5
	ttgtcctgca tactgatgaa actactgatg tcvgctggtc tgaaaggacc taccagaagc 556	5
10	taaatctcca agaatgccat ttccctatcc ctaatgattc aatctccctt accctgacca 616	5
	atcagtggcc caaattttcc agccccttgc ctcccagaac cccagcccag	5
15	agatttaaga ateteeteet aceteetgae teageeeeat gtaateatta aaete 731	L
20	<210> 6 <211> 127 <212> PRT <213> primate	
25	<400> 6 Met Gln Gln Arg Gly Leu Ala Ile Val Ala Leu Ala Val Cys Ala Ala -20 -15 -10	
20	Leu His Ala Ser Glu Ala Ile Leu Pro Ile Ala Ser Ser Cys Cys Thr -5 -1 1 5 10	
30	Glu Val Ser His His Ile Ser Arg Arg Leu Leu Glu Arg Val Asn Met 15 20 25	
	Cys Arg Ile Gln Arg Ala Asp Gly Asp Cys Asp Leu Ala Ala Val Ile 30 35 40	
35	Leu His Val Lys Arg Arg Arg Ile Cys Val Ser Pro His Asn His Thr 45 50 55	
40	Val Lys Gln Trp Met Lys Val Gln Ala Ala Lys Lys Asn Gly Lys Gly 60	
	Asn Val Cys His Arg Lys Lys His His Gly Lys Arg Asn Ser Asn Arg 75 80 85 90	
45	Ala His Gln Gly Lys His Glu Thr Tyr Gly His Lys Thr Pro Tyr 95 100 105	
50	<210> 7 <211> 543 <212> DNA <213> primate	
55	<220> <221> CDS <222> (1)(492)	
	<400> 7	

and the start and the start and the start and start

atg tcg cga ttg agg aga tac gag gtg gcg ctg gaa gcg gag gag gag48Met Ser Arg Leu Arg Arg Tyr Glu Val Ala Leu Glu Ala Glu Glu Glu11510115

- 5atc tac tgg ggc tgc ttc tac ttt ttt cct tgg ctg cga atg tgg cgc96Ile Tyr Trp Gly Cys Phe Tyr Phe Phe Pro Trp Leu Arg Met Trp Arg2025202530
- agg gag cgg agt ccg atg tct cca aca agc cag aga cta agt ctg gaa 144 10 Arg Glu Arg Ser Pro Met Ser Pro Thr Ser Gln Arg Leu Ser Leu Glu 35 40 45
- gcc ccc agc ctc cca ctg aga agc tgg cat ccg tgg aac aag act aag192Ala Pro Ser Leu Pro Leu Arg Ser Trp His Pro Trp Asn Lys Thr Lys1550505560
- cag aag caa gaa gcc ttg cct ctg ccc tcc agc act agc tgc tgt act 240 Gln Lys Gln Glu Ala Leu Pro Leu Pro Ser Ser Thr Ser Cys Cys Thr 65 70 75 80 20
 - cag ctc tat aga cag cca ctc cca agc agg ctg ctg agg agg att gtc 288 Gln Leu Tyr Arg Gln Pro Leu Pro Ser Arg Leu Leu Arg Arg Ile Val 85 90 95
- 25 cac atg gaa ctg cag gag gcc gat ggg gac tgt cac ctc cag gct gtc 336 His Met Glu Leu Gln Glu Ala Asp Gly Asp Cys His Leu Gln Ala Val 100 105 110
- gtg ctt cac ctg gct cgg cgc agt gtc tgt gtt cat ccc cag aac cgc38430Val Leu His Leu Ala Arg Arg Ser Val Cys Val His Pro Gln Asn Arg115120125
- agc ctg gct cgg tgg tta gaa cgc caa ggg aaa agg ctc caa ggg act432Ser Leu Ala Arg Trp Leu Glu Arg Gln Gly Lys Arg Leu Gln Gly Thr35130135140
- gta ccc agt tta aat ctg gta cta caa aag aaa atg tac tca aac ccc 480 Val Pro Ser Leu Asn Leu Val Leu Gln Lys Lys Met Tyr Ser Asn Pro 145 150 155 160 40
 - caa cag caa aac taataaagca acattagacg acaaaaaaaa aaaaaaaaa 532 Gln Gln Gln Asn

aaaaaaaaaa a

45

<210> 8 <211> 164 <212> PRT 50 <213> primate

<400> 8
Met Ser Arg Leu Arg Arg Tyr Glu Val Ala Leu Glu Ala Glu Glu Glu
1 5 10 15
55
Ile Tyr Trp Gly Cys Phe Tyr Phe Phe Pro Trp Leu Arg Met Trp Arg
20 25 30

WANG, et al. 97 DX0882XK Arg Glu Arg Ser Pro Met Ser Pro Thr Ser Gln Arg Leu Ser Leu Glu 45 40 35 Ala Pro Ser Leu Pro Leu Arg Ser Trp His Pro Trp Asn Lys Thr Lys 5 55 60 50 Gln Lys Gln Glu Ala Leu Pro Leu Pro Ser Ser Thr Ser Cys Cys Thr 70 75 80 65 10 Gln Leu Tyr Arg Gln Pro Leu Pro Ser Arg Leu Leu Arg Arg Ile Val 95 85 90 His Met Glu Leu Gln Glu Ala Asp Gly Asp Cys His Leu Gln Ala Val 15 110 100 105 Val Leu His Leu Ala Arg Arg Ser Val Cys Val His Pro Gln Asn Arg 125 115 120 Ser Leu Ala Arg Trp Leu Glu Arg Gln Gly Lys Arg Leu Gln Gly Thr 20 140 130 135 Val Pro Ser Leu Asn Leu Val Leu Gln Lys Lys Met Tyr Ser Asn Pro 155 160 150 145 25 Gln Gln Gln Asn 30 <210> 9 <211> 393 <212> DNA <213> rodent 35 <220> <221> CDS <222> (1)..(390) <220> 40 <221> mat_peptide <222> (67)..(390) <400> 9 48 atg cag caa gca ggg ctc aca ctc atg gct gtg gct gtg tgt gtg gct Met Gln Gln Ala Gly Leu Thr Leu Met Ala Val Ala Val Cys Val Ala 45 -10-20 -15 ttt caa acc tca gaa gcc ata ctt ccc atg gcc tcc agc tgt tgc act 96 Phe Gln Thr Ser Glu Ala Ile Leu Pro Met Ala Ser Ser Cys Cys Thr 10 50 -5 -1 1 5 144gag gtg tct cat cat gtt tcc gga aga ctt ctg gaa aga gtg agt tca Glu Val Ser His His Val Ser Gly Arg Leu Leu Glu Arg Val Ser Ser 15 20 25 55 tgc agc atc cag aga gct gac ggg gac tgc gac ctg gct gct gtc atc 192 Cys Ser Ile Gln Arg Ala Asp Gly Asp Cys Asp Leu Ala Ala Val Ile

35

30

40

ctt cat gtt aaa cgt aga aga atc tgc atc agc ccg cac aat cgt act 240 Leu His Val Lys Arg Arg Arg Ile Cys Ile Ser Pro His Asn Arg Thr 45 50 55 5 ttg aag cag tgg atg aga gcc tca gag gta aag aag aat ggc aga gaa 288 Leu Lys Gln Trp Met Arg Ala Ser Glu Val Lys Lys Asn Gly Arg Glu 60 65 70 10 aac gtc tgt tct ggg aaa aaa caa ccc agc agg aag gac aga aaa ggg 336 Asn Val Cys Ser Gly Lys Lys Gln Pro Ser Arg Lys Asp Arg Lys Gly 75 80 85 90 cac act acq aga aag cac aga aca cgt gga aca cac agg cac gaa gcc 384 15 His Thr Thr Arg Lys His Arg Thr Arg Gly Thr His Arg His Glu Ala 95 100 105 tct cgt tag 393 Ser Arg 20 <210> 10 <211> 130 <212> PRT 25 <213> rodent <400> 10 Met Gln Gln Ala Gly Leu Thr Leu Met Ala Val Ala Val Cys Val Ala -15 -10 -20 30 Phe Gln Thr Ser Glu Ala Ile Leu Pro Met Ala Ser Ser Cys Cys Thr -5 -1 1 5 10 Glu Val Ser His His Val Ser Gly Arg Leu Leu Glu Arg Val Ser Ser 35 15 20 25 Cys Ser Ile Gln Arg Ala Asp Gly Asp Cys Asp Leu Ala Ala Val Ile 35 40 30 Leu His Val Lys Arg Arg Arg Ile Cys Ile Ser Pro His Asn Arg Thr · 40 55 45 50 Leu Lys Gln Trp Met Arg Ala Ser Glu Val Lys Lys Asn Gly Arg Glu 60 65 70 45 Asn Val Cys Ser Gly Lys Lys Gln Pro Ser Arg Lys Asp Arg Lys Gly 75 80 85 90 His Thr Arg Lys His Arg Thr Arg Gly Thr His Arg His Glu Ala 50 95 100 105 Ser Arg

and and and all of the start of the

55

<210> 11 <211> 362 <212> DNA

DX0882XK

WANG, et al.

<213> primate <220> <221> CDS 5 <222> (1)..(336) <220> <221> mat_peptide <222> (73)..(336) 10 <400> 11 atg aag ggg ccc cca acc ttc tgc agc ctc ctg ctg ctg tca ttg ctc 48 Met Lys Gly Pro Pro Thr Phe Cys Ser Leu Leu Leu Leu Ser Leu Leu -15 -10 -20 15 ctg agc cca gac cct aca gca gca ttc cta ctg cca ccc agc act gcc 96 Leu Ser Pro Asp Pro Thr Ala Ala Phe Leu Leu Pro Pro Ser Thr Ala -5 -1 1 5 tgc tgt act cag ctc tac cga aag cca ctc tca gac aag cta ctg agg 20 144Cys Cys Thr Gln Leu Tyr Arg Lys Pro Leu Ser Asp Lys Leu Leu Arg 20 10 15 aag gtc atc cag gtg gaa ctg cag gag gct gac ggg gac tgt cac ctc 192 25 Lys Val Ile Gln Val Glu Leu Gln Glu Ala Asp Gly Asp Cys His Leu 35 25 30 40 cag get tte gtg ett cae etg get caa ege age ate tge ate cae eee 240 Gln Ala Phe Val Leu His Leu Ala Gln Arg Ser Ile Cys Ile His Pro 30 50 55 45 cag aac ccc agc ctg tca cag tgg ttt gag cac caa gag aga aag ctc 288 Gln Asn Pro Ser Leu Ser Gln Trp Phe Glu His Gln Glu Arg Lys Leu 60 65 • 70 35 cat ggg act ctg ccc aag ctg aat ttt ggg atg cta agg aaa atg ggc 336 His Gly Thr Leu Pro Lys Leu Asn Phe Gly Met Leu Arg Lys Met Gly 75 80 85 362 40 tgaagcccca atagccaaat aataaa <210> 12 <211> 112 <212> PRT 45 <213> primate <400> 12 Met Lys Gly Pro Pro Thr Phe Cys Ser Leu Leu Leu Ser Leu Leu -10 -20 -15 50 Leu Ser Pro Asp Pro Thr Ala Ala Phe Leu Leu Pro Pro Ser Thr Ala -1 5 -5 1 Cys Cys Thr Gln Leu Tyr Arg Lys Pro Leu Ser Asp Lys Leu Leu Arg 55 15 20 10 Lys Val Ile Gln Val Glu Leu Gln Glu Ala Asp Gly Asp Cys His Leu 40 25 30 35

and and an are a superior of the second state and a superior and a superior and a superior and a superior and a

WANG, et al.

Gln Ala Phe Val Leu His Leu Ala Gln Arg Ser Ile Cys Ile His Pro 45 50 55 5 Gln Asn Pro Ser Leu Ser Gln Trp Phe Glu His Gln Glu Arg Lys Leu 60 65 70 His Gly Thr Leu Pro Lys Leu Asn Phe Gly Met Leu Arg Lys Met Gly 75 80 85 10 <210> 13 <211> 433 <212> DNA <213> rodent 15 <220> <221> CDS <222> (23)..(382) 20 <220> <221> mat peptide <222> (98)..(382) <400> 13 25 gaaacctcta ggctgagtga gc atg atg gag ggg ctc tcc ccc gcc agc agc 52 Met Met Glu Gly Leu Ser Pro Ala Ser Ser -25 -20 ctc ccg ctg tta ctg ttg ctt ctg agc ccg gct cct gaa gca gcc ttg 100 30 Leu Pro Leu Leu Leu Leu Leu Ser Pro Ala Pro Glu Ala Ala Leu -15 -10 -5 -1 1 cct ctg ccc tcc agc act agc tgc tgt act cag ctc tat aga cag cca 148 Pro Leu Pro Ser Ser Thr Ser Cys Cys Thr Gln Leu Tyr Arg Gln Pro 35 10 5 15 ctc cca agc agg ctg ctg agg agg att gtc cac atg gaa ctg cag gag 196 Leu Pro Ser Arg Leu Leu Arg Arg Ile Val His Met Glu Leu Gln Glu 20 25 30 40 gcc gat ggg gac tgt cac ctc cag gct gtc gtg ctt cac ctg gct cgg 244 Ala Asp Gly Asp Cys His Leu Gln Ala Val Val Leu His Leu Ala Arg 35 40 45 45 cgc agt gtc tgt gtt cat ccc cag aac cgc agc ctg gct cgg tgg tta 292 Arg Ser Val Cys Val His Pro Gln Asn Arg Ser Leu Ala Arg Trp Leu 50 55 60 65 gaa cgc caa ggg aaa agg ctc caa ggg act gta ccc agt tta aat ctg 340 50 Glu Arg Gln Gly Lys Arg Leu Gln Gly Thr Val Pro Ser Leu Asn Leu 70 75 80 gta cta caa aag aaa atg tac tca aac ccc caa cag caa aac 382 Val Leu Gln Lys Lys Met Tyr Ser Asn Pro Gln Gln Gln Asn 55 85 90 95 433

32

<210> 14 <211> 120 <212> PRT 5 <213> rodent <400> 14 Met Met Glu Gly Leu Ser Pro Ala Ser Ser Leu Pro Leu Leu Leu -25 -20 -15 -10 10 Leu Leu Ser Pro Ala Pro Glu Ala Ala Leu Pro Leu Pro Ser Ser Thr 5 -5 -1 1 Ser Cys Cys Thr Gln Leu Tyr Arg Gln Pro Leu Pro Ser Arg Leu Leu 15 10 15 20 Arg Arg Ile Val His Met Glu Leu Gln Glu Ala Asp Gly Asp Cys His 25 35 30 20 Leu Gln Ala Val Val Leu His Leu Ala Arg Arg Ser Val Cys Val His 55 40 45 50 Pro Gln Asn Arg Ser Leu Ala Arg Trp Leu Glu Arg Gln Gly Lys Arg 65 70 60 25 Leu Gln Gly Thr Val Pro Ser Leu Asn Leu Val Leu Gln Lys Lys Met 80 75 85 Tyr Ser Asn Pro Gln Gln Gln Asn 95 30 90 <210> 15 <211> 32 35 <212> DNA <213> primate <400> 15: ATCTGGCACC ACACCTTCTA CAATGAGCTG CG 40 <210> 16 <211> 32 <212> DNA 45 <213> primate <400> 16 CGTCATACTC CTGCTTGCTG ATCCACATCT GC

50